Kerala LAC 2021 results

Author

Stephy Thomas

The geojson file describing the boundaries of the Kerala Assembly constituencies are avaialble in the Kaggle. The data may be downloaded from Kaggle using the link.

import json
KeralaLAC=json.load(open('/home/stephy/Documents/class/Python Website/Choropleth/KeralaLAC_QID.geojson'))

Now we shall see the data relating to each constituency as follows

KeralaLAC['features'][0]
{'type': 'Feature',
 'properties': {'State': 'KERALA',
  'District': 'KASARAGOD',
  'Asmbly_Con': 'Manjeshwaram',
  'Prlmnt_Con': 'KASARAGOD',
  'Area(sqkm)': 378.6475933415851,
  'WikiData': 'Q13113782'},
 'geometry': {'type': 'MultiPolygon',
  'coordinates': [[[[75.1477492255188, 12.634487036338157],
     [75.14545963673042, 12.634487036338157],
     [75.14673163050175, 12.626830779509708],
     [75.15563558690093, 12.620075258778723],
     [75.15410919437535, 12.60611384926802],
     [75.14596843423895, 12.602961272926894],
     [75.1327396990173, 12.603411640975628],
     [75.1273973251778, 12.616021946340133],
     [75.11111580490501, 12.615121210242668],
     [75.11137020365928, 12.621876730973653],
     [75.10526463355697, 12.629082619753369],
     [75.0821143469191, 12.629532987802103],
     [75.05947285778974, 12.618724154632528],
     [75.05692887024712, 12.626380411460975],
     [75.05336728768745, 12.626380411460975],
     [75.04675292007663, 12.622777467071117],
     [75.04802491384794, 12.617373050486329],
     [75.04141054623712, 12.60971679365788],
     [75.0279274122612, 12.614220474145203],
     [75.01368108202252, 12.60386200902436],
     [74.98442522528235, 12.561527412443521],
     [74.97552126888316, 12.570985141466899],
     [74.96000294487315, 12.566481460979576],
     [74.95389737477086, 12.558374836102395],
     [74.95466057103364, 12.549367475127747],
     [74.93863344951512, 12.591251703659854],
     [74.94194063332053, 12.58674802317253],
     [74.9401598420407, 12.595305016098445],
     [74.94779180466857, 12.60611384926802],
     [74.95415177352513, 12.605213113170556],
     [74.94194063332053, 12.607464953414219],
     [74.93965104453217, 12.595755384147179],
     [74.9320190819043, 12.614670842193934],
     [74.94168623456626, 12.632235196094497],
     [74.95008139345693, 12.636288508533088],
     [74.94244943082906, 12.637189244630552],
     [74.92820310059037, 12.61196863390154],
     [74.8880080974169, 12.70789702828153],
     [74.8969120538161, 12.697088195111952],
     [74.90632480772379, 12.695286722917022],
     [74.89894724385019, 12.69843929925815],
     [74.89360487001068, 12.711499972671387],
     [74.89156967997658, 12.71240070876885],
     [74.89843844634166, 12.714202180963781],
     [74.88673610364559, 12.71240070876885],
     [74.88495531236576, 12.710599236573922],
     [74.88699050239985, 12.708797764378993],
     [74.8847009136115, 12.71014886852519],
     [74.86765619707592, 12.751582729008565],
     [74.86969138711001, 12.761040458031943],
     [74.87427056468674, 12.755185673398422],
     [74.88241132482314, 12.754284937300959],
     [74.93303667692135, 12.780856652176166],
     [74.95847655234759, 12.784909964614757],
     [74.96025734362742, 12.779055179981237],
     [74.96458212244988, 12.781757388273629],
     [74.96865250251808, 12.776803339737574],
     [74.98747801033349, 12.783108492419828],
     [74.99231158666448, 12.788512909004616],
     [74.98925880161333, 12.795718797784332],
     [74.99841715676678, 12.786261068760954],
     [75.00274193558924, 12.788512909004616],
     [75.00146994181793, 12.792115853394474],
     [75.00554032188613, 12.790764749248277],
     [75.00401392936055, 12.777253707786308],
     [75.00986510070858, 12.767795978762928],
     [74.98747801033349, 12.742124999985185],
     [74.98417082652809, 12.744376840228846],
     [74.98391642777382, 12.736720583400398],
     [74.98620601656218, 12.734018375108004],
     [74.99231158666448, 12.739873159741524],
     [75.013172284514, 12.72771322242575],
     [75.0009611443094, 12.716454021207444],
     [75.01495307579383, 12.714202180963781],
     [75.01851465835351, 12.720957701694765],
     [75.03912095744876, 12.72411027803589],
     [75.0523496926704, 12.720056965597301],
     [75.05209529391614, 12.713301444866316],
     [75.05413048395023, 12.706996292184062],
     [75.04980570512778, 12.703843715842936],
     [75.05514807896729, 12.692134146575896],
     [75.04370013502547, 12.692584514624627],
     [75.04039295122007, 12.68492825779618],
     [75.04649852132236, 12.667814271944351],
     [75.05413048395023, 12.670066112188012],
     [75.05769206650992, 12.665562431700689],
     [75.05921845903548, 12.671867584382941],
     [75.06863121294319, 12.664661695603225],
     [75.0739735867827, 12.672317952431673],
     [75.08593032823303, 12.6754705287728],
     [75.08516713197025, 12.695737090965755],
     [75.08084235314779, 12.698889667306881],
     [75.08593032823303, 12.703843715842936],
     [75.10628222857402, 12.696187459014487],
     [75.11111580490501, 12.681775681455052],
     [75.12205495133828, 12.67907347316266],
     [75.12485333763517, 12.681775681455052],
     [75.13248530026304, 12.675920896821532],
     [75.15156520683273, 12.68312678560125],
     [75.14953001679862, 12.673669056577872],
     [75.16174115700322, 12.671867584382941],
     [75.15054761181568, 12.649799549995057],
     [75.13808207285682, 12.643044029264072],
     [75.1477492255188, 12.634487036338157]]]]}}

These are the vertices of the polygon corresponding to the first assembly constituency, Manjeshwaram. Similarly we can find the data relating to other constituencies from the same data set by changing the indices.

KeralaLAC['features'][10]['properties']
{'State': 'KERALA',
 'District': 'KANNUR',
 'Asmbly_Con': 'Mattannur',
 'Prlmnt_Con': 'KANNUR',
 'Area(sqkm)': 346.1118696878761,
 'WikiData': 'Q16134425'}

We have the data corresponding to the assembly constituency Mattannur using the index 10.

Now we shall try to import the data corresponing to Kerala Assembly Elections 2021 avaliable in kaggle.

import pandas as pd
election=pd.read_csv('/home/stephy/Documents/class/Python Website/Choropleth/Kerala_election_2021.csv')
election.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 140 entries, 0 to 139
Data columns (total 18 columns):
 #   Column        Non-Null Count  Dtype  
---  ------        --------------  -----  
 0   CONSTITUENCY  140 non-null    object 
 1   DISTRICT      140 non-null    object 
 2   LDF           140 non-null    int64  
 3   UDF           140 non-null    int64  
 4   NDA           140 non-null    int64  
 5   NOTA          140 non-null    int64  
 6   OTHERS        140 non-null    int64  
 7   EVM VOTES     140 non-null    int64  
 8   POSTAL VOTES  140 non-null    int64  
 9   TOTAL VOTES   140 non-null    int64  
 10  LEAD          140 non-null    int64  
 11  WINNER        140 non-null    object 
 12  %LDF          140 non-null    float64
 13  %UDF          140 non-null    float64
 14  %NDA          140 non-null    float64
 15  %NOTA         140 non-null    float64
 16  %POSTAL       140 non-null    float64
 17  %LEAD         140 non-null    float64
dtypes: float64(6), int64(9), object(3)
memory usage: 19.8+ KB

We can see that the data is sorted in the alphabetical order in the results file and the data is presented in another order in geojson file. Let us verify whether the names of the constituencies, which will be used to link the data with the GeoJSON file, are spelled the same in both files.

mismatch=[]

for i in range(140):
  consName=KeralaLAC['features'][i]['properties']['Asmbly_Con']
  if (consName not in list(election['CONSTITUENCY'])):
    mismatch.append(consName)
print(mismatch)
['Kalliasseri', 'Mananthavady (ST)', 'Sulthanbathery (S', 'Kuttiadi', 'Balusseri (SC)', 'Ernad', 'Wandoor (SC)', 'Mannarkkad', 'Vallikunnu', 'Kongad(SC)', 'Malampuzha', 'Thrithala', 'Chelakkara (SC)', 'Tarur (SC)', 'Wadakkanchery', 'Nemmara', 'Nattika(SC)', 'Chalakudy', 'Irinjalakuda', 'Devikulam (SC)', 'Vypeen', 'Kunnathunad (SC)', 'Thrikkakara', 'Thripunithura', 'Piravom', 'Vaikom (SC)', 'Peerumade', 'Puthuppally', 'Kanjirappally', 'Kuttanad', 'Changanassery', 'Ambalappuzha', 'Chengannur', 'Mavelikkara (SC)', 'Adoor (SC)', 'Karunagappally', 'Kunnathur (SC)', 'Chathannoor', 'Attingal (SC)', 'Chirayinkeezhu', 'Kazhakoottam', 'Vattiyoorkavu(SC)', 'Thiruvananthapura']

We will update the data in the respective data file and the new data will be imported in Python.

election_revised=pd.read_csv('/home/stephy/Documents/class/Python Website/Choropleth/Kerala_election_2021_Revised.csv')
election_revised.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 140 entries, 0 to 139
Data columns (total 18 columns):
 #   Column        Non-Null Count  Dtype  
---  ------        --------------  -----  
 0   CONSTITUENCY  140 non-null    object 
 1   DISTRICT      140 non-null    object 
 2   LDF           140 non-null    int64  
 3   UDF           140 non-null    int64  
 4   NDA           140 non-null    int64  
 5   NOTA          140 non-null    int64  
 6   OTHERS        140 non-null    int64  
 7   EVM VOTES     140 non-null    int64  
 8   POSTAL VOTES  140 non-null    int64  
 9   TOTAL VOTES   140 non-null    int64  
 10  LEAD          140 non-null    int64  
 11  WINNER        140 non-null    object 
 12  %LDF          140 non-null    float64
 13  %UDF          140 non-null    float64
 14  %NDA          140 non-null    float64
 15  %NOTA         140 non-null    float64
 16  %POSTAL       140 non-null    float64
 17  %LEAD         140 non-null    float64
dtypes: float64(6), int64(9), object(3)
memory usage: 19.8+ KB

Now let us have a look at how this file look like.

election_revised.head()
CONSTITUENCY DISTRICT LDF UDF NDA NOTA OTHERS EVM VOTES POSTAL VOTES TOTAL VOTES LEAD WINNER %LDF %UDF %NDA %NOTA %POSTAL %LEAD
0 Alappuzha Alappuzha 73412 61768 21650 1089 527 154149 4297 158446 11644 LDF 46.332504 38.983628 13.663961 0.687300 2.711965 7.348876
1 Ambalappuzha Alappuzha 61365 50240 22389 591 2436 133382 3639 137021 11125 LDF 44.785106 36.665913 16.339831 0.431321 2.655797 8.119193
2 Aroor Alappuzha 75617 68604 17479 846 1945 160851 3640 164491 7013 LDF 45.970296 41.706841 10.626113 0.514314 2.212887 4.263455
3 Chengannur Alappuzha 71502 39409 34620 491 1149 142958 4213 147171 32093 LDF 48.584300 26.777694 23.523656 0.333626 2.862656 21.806606
4 Cherthala Alappuzha 83702 77554 14562 602 1677 172214 5883 178097 6148 LDF 46.997984 43.545933 8.176443 0.338018 3.303256 3.452051
import plotly.express as px
fig = px.choropleth(
    election_revised,
    geojson=KeralaLAC,
    locations='CONSTITUENCY',       # Column in your DataFrame
    color='WINNER',                 # Column for coloring
    featureidkey='properties.Asmbly_Con'  # Key in GeoJSON that matches `locations`
)
fig.update_geos(fitbounds='locations',visible=False)
fig.to_html()
fig.show()

Now we shall try to show the constituencies with coalition that won in the constituency.

import plotly.express as px
fig = px.choropleth(
    election_revised,
    geojson=KeralaLAC,
    locations='CONSTITUENCY',       # Column in your DataFrame
    color='WINNER',                 # Column for coloring
    featureidkey='properties.Asmbly_Con'  # Key in GeoJSON that matches `locations`
)
fig.update_geos(fitbounds='locations',visible=False)
fig.to_html()
fig.show()

Now we shall assign specific colours to each coalition- UDF -Blue and LDF -Red.

import plotly.express as px
coal_colour={'UDF':'blue',
'LDF':'red'}
fig = px.choropleth(
    election_revised,
    geojson=KeralaLAC,
    locations='CONSTITUENCY',       # Column in your DataFrame
    color='WINNER',                 # Column for coloring
    featureidkey='properties.Asmbly_Con',  # Key in GeoJSON that matches `locations`
    color_discrete_map=coal_colour
)
fig.update_geos(fitbounds='locations',visible=False)
fig.to_html()
fig.show()

Now we shall use the intensity of colours to show the lead each coalition got in the constituency, again sticking on to the colour pattern.

import plotly.express as px
import json
import pandas as pd


# Define a Numeric Mapping for Coalition
coalition_map = {"UDF": 1, "LDF": -1}  # UDF → 1 (Blue), LDF → -1 (Red)
election_revised["COALITION_NUM"] = election_revised["WINNER"].map(coalition_map) * election_revised["%LEAD"]


# Create Choropleth
fig = px.choropleth(
    election_revised,
    geojson=KeralaLAC,
    locations="CONSTITUENCY",  # Matches with GeoJSON
    featureidkey="properties.Asmbly_Con",  # Ensure this matches GeoJSON structure
    color="COALITION_NUM",  # Numeric color mapping
    color_continuous_scale='RdBu',  # Custom Red-White-Blue Scale
    hover_name="CONSTITUENCY",
    hover_data=["WINNER", "%LEAD"]
)

# Update Layout
fig.update_geos(fitbounds="locations", visible=False)
fig.update_layout(title="Election Results: Color by Coalition, Intensity by Lead %")

# Show Figure
fig.to_html()
fig.show()